

Nova M3 Control System COM Protocol

Ver. 1.5

Revision of History

Version	Revised By	Modification	Date	
		Add Chapter:		
		3.11 Sending Card resolution setting		
1.3	Wade	3.12 Display Control	2014-8-15	
		3.13 Calibration Control		
		3.14 Reconnect Sending Card/Receiving Card		
		Add Chapter:		
		1.2 RS232 Software setting;		
		Add "3.3 Brightness Adjustment" example		
		(1) Set all receiving cards on the same Ethernet port		
		overall brightness		
1.4	Wade	(2) Set all receiving cards on all Ethernet ports overall	2015-3-18	
		brightness		
		Update Chapter:		
		3.5 Gamma Value and Table		
		3.8.3 Protocol for accessing NS048C through function		
		card		
		3.1.1 Basic monitoring data		
		Add command package example to acquire temperature		
		data and voltage data		
		3.1.2 DVI signal checking		
		Add command package to check when there is DVI signal		
		input		
		3.3 Brightness Adjustment		
		Add note		
		3.4 Reset Sending Cards/Controllers to Factory Setting		
		Add command package example		
1.5	Wade	3.5.1 Gamma Value	2015-5-15	
		Add command package example		
		3.5.2 Gamma Table		
		Add note		
		3.6 Sending cards / Controllers Firmware Version		
		Information		
		Add command package example		
		3.7.2 Controller		
		Add command package example		
		3.7.3 Function card		
		Add command package example		

3.8.2 Protocol for accessing MTH300
Modify Temperature Unit to 0.10 $^\circ \! \mathbb{C}$
3.8.5 Protocol for stand-alone light sensor
Add command package example
3.12.1 Display control register setting
Add command package example
3.15 Parameter Store
Add parameter save command

1 Initial

1.1 Data Transmission Direction

- > The command transmission is through serial port.
- > The command is accepted and acknowledged by sending cards.

1.2 RS232 Software setting

Different sending unit/card has different baud rate.

For MSD300/MCTRL300/MCTRL500

- Baud rate: 115200 bps
- Data Bits: 8
- Parity: NONE
- Stop Bits: 1
- Flow Type: OFF

For MSD600/MCTRL600/MCTRL660

- Baud rate: 1048576 bps
- Data Bits: 8
- Parity: NONE
- Stop Bits: 1
- Flow Type: OFF

2 Data Package Format For Command

2.1 Format of Request Data Package

Byte Definition For the Data Package Format

No.	1	2	3	4	5
Byte	2	1	1	1	1
Counts					
Content	Head	АСК	Serial Number	Source Address	Destination Address

No.	6	7	8	
Length	1	1	2	
(Byte)				
Content	Device Type	Port Address	Board Address[7:0]	Board Address[15:8]

No.	9	10	11	
Length	1	1	4	
(Byte)				
Content	Code	Reserved	Register Unit Address[7:0]	Register Unit Address[15:8]

No.			12
Length			2
(Byte)			
Content	Register Unit Address[23:16]	Register Unit Address[31:24]	Valid Data Length[7:0]

No.		13	14	
Length		Ν	2	
(Byte)				
Content	Valid Data Length[15:8]	Write Data [0:N]	Checkout[7:0]	Checkout[15:8]

Notation

No.	Content	Meaning	Remark
1	Head	Data package head	55H, AAH
2	АСК	Not used for Request Command	00H
3	Serial Number	Serial number of a command. Should not be used again	
		before the command with this serial number has been	
		finished.	
4	Source Address	Address of the computer or sending card that generates and	This address for
		starts the command.	a computer is
			fixed to be: FEH.
5	Destination	Address of the computer or sending card that the command is	Devices
	Address	to be sent to. For computer, the address is fixed to be FEH.	connected in
		The first device with Com port properties (could accept and	daisy chain to a

		process command.) connec	computer serial							
		address of 0, the second dev	port should be							
		on.	of the same							
6	Device Type	00Н	Devices with Com port							
			properties, like sending cards,							
			TV cards.							
		01H	Receiving card							
		02H	Function card							
7	Port Address	RJ45 output port address of t	RJ45 output port address of the sending card							
8	Board	Low 8 bits of the address of a	a device connected in daisy chain							
	Address[7:0]	on a CAT5 data cable.		The first device						
	Board	High 8 bits of the address of a	a device connected in daisy chain	connected on						
	Address[15:8]	on a CAT5 data cable.		the cable has the						
			address of 0, the							
				has the address						
				of 1, and so on.						
			devices will be							
			assigned address							
				respectively.						
9	Code	00H	Indicating this is a Read data	Both read and						
			package (command)	write are						
		01H	Indicating this is a Write data	defined from the						
			package (command)	aspect of the						
		02H-FFH	Reserved	device that						
				starts the						
				command.						
10	Reserved	Reserved								
11	Register Unit	The first byte (low) of the a	ddress of the register unit on a	The register unit						
	Address[7:0]	device		address is 4						
	Register Unit	The second byte of the ad	dress of the register unit on a	bytes long. Low						
	Address[15:8]	device		at the front and						
	Register Unit	The third byte of the address	of the register unit on a device	high at the end.						
	Address[23:16]									
	Register Unit	The forth byte (high) of the								
	Address[31:24]	device								
12	Valid Data	Low 8 bits of the length of va	id data.	This is the length						
	Length[7:0]			of the data to be						
	Valid Data	High 8 bits of the length of va	lid data.	written to the						
	Length[15:8]			destination						
			device when							

NovaStar Tech Co., Ltd

	•	-	
			Code is 01H. And
			when Code is
			00H, this will be
			the length of the
			data to be read
			from the
			destination
			device.
13	Write Data [0:N]	Data to be written to the destination device. The length N is	When Code is
		given by Valid Data Length.	01H, this section
			is the data to
			written. When
			Code is 00H, this
			section does not
			exist.
14	Checkout[7:0]	Low 8 bits of the checksum	The sum of all
	Checkout[15:8]	High 8 bits of the checksum	data in byte
			except the
			packet Head and
			then plus
			0x5555.

➢ Example

Command (Data package) good to be sent

55 AA	00	32	FE	00	01	00	00 00	00	00	00 00 00 0A	00 01	91 56
1	2	3	4	5	6	7	8	9	10	11	12	14

Note:

- \diamond The numbers pointed by the arrows are the No. in the tables above.
- \diamond There no number 13 because the Code is 00, and the Write Data does not exist.
- ♦ Checksum = 32 + FE + 01 + 0A + 01 + 5555 = 5691, so checkout[7:0]=91, checkout[15:8]=56.

2.2 Format of the Acknowledge Data Package

Byte Definition of the Data Package Format

No.	1	2	3	4	5
Length	2	1	1	1	1
(Byte)					
Content	Head	ACK	Serial Number	Source Address	Destination Address

NovaStar Tech Co., Ltd

No.	6	7	8	
Length	1	1	2	
(Byte)				
Content	Device Type	Port Address	Board Address[7:0]	Board Address[15:8]

No.	9	10	11	
Length	1	1	4	
(Byte)				
Content	Code	Reserved	Register Unit Address[7:0]	Register Unit Address[15:8]

No.			12
Length			2
(Byte)			
Content	Register Unit Address[23:16]	Register Unit Address[31:24]	Valid Data Length[7:0]

No.		13	14	
Length		Ν	2	
(Byte)				
Content	Valid Data Length[15:8]	Write Data [0:N]	Checkout[7:0]	Checkout[15:8]

Notation

No.	Content	Meaning	Remark	
1	Head	Head of the data package	AAH, 55H	
2	АСК	00H Command Succeeded		Different ACK
		01H	Command failed due to time	value indicates
			out (time out on trying to	different result.
			access devices connected to a	
			sending card)	
		02H	Command failed due to check	
			error on request data package	
		03H	Command failed due to check	
			error on acknowledge data	
			package	
		04H	Command failed due to invalid	
			command	
		05H	Reserved	
		06H-FFH	Reserved	
3	Serial Number	Serial number of a comma	nd. Should not be used again	
		before the command with	this serial number has been	
		finished.		

-				
4	Source Address	Address of the computer or s	ending card that generates and	This address for
		starts the command.		a computer is
				fixed to be : FEH.
5	Destination	Address of the computer or se	Devices	
	Address	to be sent to. For computer,	the address is fixed to be FEH.	connected in
		The first device with Com po	rt properties (could accept and	daisy chain to a
		process command.) connect	ed to the com port has the	computer serial
		address of 0, the second devi	ce has the address of 1, and so	port should be
		on.		of the same
				type.
6	Device Type	00H	Devices with Com port	
			properties, like sending cards,	
			TV cards.	
		01H	Receiving card	
		02H	Function card	
7	Port Address	RJ45 output port address of th	ne sending card	
8	Board	Low 8 bits of the address of a	device connected in daisy chain	
	Address[7:0]	on a CAT5 data cable.		The first device
	Board	High 8 bits of the address of a	device connected in daisy chain	connected on
	Address[15:8]	on a CAT5 data cable.		the cable has the
				address of 0, the
				second device
				has the address
				of 1, and so on.
				Note that
				different type of
				devices will be
				assigned address
				respectively.
9	Code	00H	Indicating this is a Read data	
			package (command)	
		01H	Indicating this is a Write data	
			package (command)	
		02H-FFH	Reserved	
10	Reserved	Reserved		
11	Register Unit	The first byte (low) of the ac	ddress of the register unit on a	The register unit
	Address[7:0]	device		address is 4
	Register Unit	The second byte of the add	lress of the register unit on a	bytes long. Low
	Address[15:8]	device		at the front and
	Register Unit	The third byte of the address of	of the register unit on a device	high at the end.
	Address[23:16]			
	Register Unit	The forth byte (high) of the a	ddress of the register unit on a	
	Address[31:24]	device		
12	Valid Data	Low 8 bits of the length of vali	d data.	When Code is

	Length[7:0]		00H, this is the
	Valid Data	High 8 bits of the length of valid data.	length of the
	Length[15:8]		data read for the
			destination
			device. When
			Code is 00H, this
			will be 0.
13	Write Data [0:N]	Data to be written to the destination device. The length N is	When Code is
		given by Valid Data Length.	00H, this is the
			data read from
			the destination
			device. When
			Code is 01H, this
			section does not
			exist.
14	Checkout[7:0]	Low 8 bits of the checksum	The sum of all
	Checkout[15:8]	High 8 bits of the checksum	data in byte
			except the
			packet Head and
			then plus
			0x5555.

> Example:

Data package retrieved from the Com port.

AA 55	00	5D	00	FE	00	00	00 00	01	00	10 00 00 05	00 00	C6 56
1	2	3	4	5	6	7	8	9	10	11	12	14

Note:

- \diamond The numbers pointed by the arrows are the No. in the tables above.
- \diamond There no number 13 because the Code is 01, and the Write Data does not exist.
- ♦ Chechsum = 5D + FE + 01 + 10 + 05 + 5555 = 56C6, so checkout[7:0] = C6, checkout[15:8] = 56.

3 Commands

3.1 Command for acquiring monitoring data

Monitor card may be required for some of the data.

3.1.1 Basic monitoring data

- Device: Receiving Card
- Hase Address: 0a000000 H
- ✤ Data Length: 100H

Offset	Name	Attrib	Description	Realize	Remar
		ute		Status	k
0x000000	TempValidOfScanC	R	This byte is for the temperature sensor		
	ard		on the receiving card.		
			The highest bit is used to indicate valid		
			temperature data. 1 for data valid and 0		
			for data invalid.		
			The lowest bit is for negative/positive		
			temperature. 0 for positive and 1 for		
			negative.		
0x000001	TempOfScanCard	R	Temperature output by the sensor on		
			the receiving card. Unit: 0.5 $^{\circ}\mathrm{C}$		
0x000002	HumiOfScanCard	R	This byte is for humidity measured by		No
			sensor on the receiving card.		humidi
			The highest bit is for valid data. 1 for		ty
			valid and 0 for invalid.		sensor
			The rest 7 bits are for the humidity		on all
			value.		Nova
			Value range: 0~100		Receivi
			Unit: %RH		ng
					card at
					this
					mome
					nt.
0x000003	VoltageOfScanCard	R	This byte is for power supply voltage of		
			the receiving card.		
			The highest bit is for valid data. 1 for		
			valid and 0 for invalid.		

			The rest 7 bits are for the voltage value.	
			Value range: 0~127	
			Unit: 0.1V	
0x000004	Reserved	R	Reserved	
0,000004	Reserved	Ň		
 0v00001f				
0x000011		D		
0x000020	AttachedivionitorC	к	This byte is used to indicate whether	
	ardExist		the monitor card is existed. Uxff for	
			monitor card existing and other values	
			for not existing.	
0x000021	AttachedMonitorC	R	Module information of the monitor	
0x000022	ardModle		card	
0x000023	AttachedMonitorC	R	Firmware version of the monitor card	
0x000024	ardProgramVersio			
0x000025	n			
0x000026				
0x000027	TempValidOfMonit	R	This byte is for the temperature sensor	
	orCard		on the monitor card.	
			The highest bit is used to indicate valid	
			temperature data. 1 for data valid and 0	
			for data invalid.	
			The lowest bit is for negative/positive	
			temperature. 0 for positive and 1 for	
			negative.	
0x000028	Reserver	R	Reserved	
0x000029	HumiOfMonitorCa	R	This byte is for humidity measured by	
	rd		sensor on the monitor card.	
			The highest bit is for valid data. 1 for	
			valid and 0 for invalid.	
			The rest 7 bits are for the humidity	
			value.	
			Value range: 0~100	
			Unit: %BH	
0x00002a		R	This byte is for the smoke sensor on the	
5Zu			monitor card. The lowest hit is used to	
			indicate whether smoke is detected 0	
			for no smoke detected and 1 for smoke	
			detected	
Ուսուս	FanSpeed0OfMoni	R	The speed of Ean 1 monitored by the	
0700020	torCard	Ň	monitor card. The highest hit is for data	
	loicaiu		validation. The root 7 hits are for the	
			speed ranging form 0 to 127 with write	
			speed, ranging form 0 to 127 with unit	
0.00055			Surpm.	
0x00002c	FanSpeed10fMoni	R	The speed of Fan 2 monitored by the	

	torCard		monitor card. The highest bit is for data	
			validation. The rest 7 bits are for the	
			speed, ranging form 0 to 127 with unit	
			50rpm.	
0x00002d	FanSpeed2OfMoni	R	The speed of Fan 3 monitored by the	
	torCard		monitor card. The highest bit is for data	
			validation. The rest 7 bits are for the	
			speed, ranging form 0 to 127 with unit	
			50rpm.	
0x00002e	FanSpeed3OfMoni	R	The speed of Fan 4 monitored by the	
	torCard		monitor card. The highest bit is for data	
			validation. The rest 7 bits are for the	
			speed, ranging form 0 to 127 with unit	
			50rpm.	
0x00002f	Voltage0OfMonito	R	Power supply voltage of the monitor	
	rCard		card. The highest bit is for data	
			validation. The rest 7 bits are for the	
			voltage value, ranging form 0 to 127	
			with unit 0.1V.	
0x000030	Voltage10fMonito	R	The Voltage 1 monitored by the	
	rCard		monitor card. The highest bit is for data	
			validation. The rest 7 bits are for the	
			voltage value, ranging form 0 to 127	
			with unit 0.1V.	
0x000031	Voltage2OfMonito	R	The Voltage 2 monitored by the	
	rCard		monitor card. The highest bit is for data	
			validation. The rest 7 bits are for the	
			voltage value, ranging form 0 to 127	
			with unit 0.1V.	
0x000032	Voltage3OfMonito	R	The Voltage 3 monitored by the	
	rCard		monitor card. The highest bit is for data	
			validation. The rest 7 bits are for the	
			voltage value, ranging form 0 to 127	
			with unit 0.1V.	
0x000033	Voltage4OfMonito	R	The Voltage 4 monitored by the	
	rCard		monitor card. The highest bit is for data	
			validation. The rest 7 bits are for the	
			voltage value, ranging form 0 to 127	
			with unit 0.1V.	
0x000034	Voltage5OfMonito	R	The Voltage 5 monitored by the	
	rCard		monitor card. The highest bit is for data	
			validation. The rest 7 bits are for the	
			voltage value, ranging form 0 to 127	
			with unit 0.1V.	

0x000035	Voltage6OfMonito	R	The Voltage 6 monitored by the	
	rCard		monitor card. The highest bit is for data	
			validation. The rest 7 bits are for the	
			voltage value, ranging form 0 to 127	
			with unit 0.1V.	
0x000036	Voltage7OfMonito	R	The Voltage 7 monitored by the	
	rCard		monitor card. The highest bit is for data	
			validation. The rest 7 bits are for the	
			voltage value, ranging form 0 to 127	
			with unit 0.1V.	
0x000037	Voltage8OfMonito	R	The Voltage 8 monitored by the	
	rCard		monitor card. The highest bit is for data	
			validation. The rest 7 bits are for the	
			voltage value, ranging form 0 to 127	
			with unit 0.1V.	
0x000038	Reserved	R	Reserved	
0x000040				
0x000041	GeneralStatusOfM	R	This byte is for cabinet door opening	
	onitorCard		checking. Bit 0 is for the first cabinet	
			and Bit1 is for the second cabinet. 0 for	
			door closed and 1 for door open.	
0x000042	Reserved	R	Reserved	
0x0000ff				

Note:

Only when a monitor card is connected to the control system will the data of the monitor card be valid. So when get the data, the first step is to check whether the monitor card is existed by analyzing data at 0x000020. If the monitor card does not exist, do not use the monitor card data.

> Example

To acquire monitoring data of the first receiving card

Request command: 55 AA 00 32 FE 00 01 00 00 00 00 00 00 00 00 00 01 91 56

Example

To acquire temperature data of the first receiving card Request command: 55 AA 00 32 FE 00 01 00 00 00 00 00 00 00 00 00 0A 02 00 92 56 Acknowledge Data Package: AA 55 00 32 00 FE 01 00 00 00 00 00 00 00 00 0A 02 00 <mark>80 56</mark> 68

57

Note: 80: means the data is valid 56: means the temperature is 43 $^{\circ}C$

> Example

To acquire voltage data of the first receiving card Request command: 55 AA 00 32 FE 00 01 00 00 00 00 00 00 00 00 00 00 04 01 00 94 56 Acknowledge Data Package: AA 55 00 32 00 FE 01 00 00 00 00 00 00 00 00 00 A 01 00 A9 3D

57

Note:

A9: MSB is '1', means the data is valid; low 7bit value is "29", means the voltage is 4.1 V.

3.1.2 DVI signal checking

- Device: Sending Card
- Base Address: 02000000 H
- 🖶 🛛 Data Length: 1H

Offset	Attribute	Description	
0x000017	R	This byte is for valid DVI signal.	
		01: DVI signal is good	
		00 : No DVI signal	

Example

To check whether a sending card has DVI signal in.

There is no DVI signal input:

Request Command: 55 AA 00 16 FE 00 00 00 00 00 00 00 17 00 00 02 01 00 83 56 Acknowledge Data Package: AA 55 00 16 00 FE 00 00 00 00 00 00 17 00 00 02 01 00 00 83 56

There is DVI signal input:

Request Command: 55 AA 00 16 FE 00 00 00 00 00 00 00 17 00 00 02 01 00 83 56 Acknowledge Data Package: AA 55 00 16 00 FE 00 00 00 00 00 00 17 00 00 02 01 00 01 84 56

3.2 Power Supply Control

A function card should be connected to the com port of the computer.

- Device: Function Card
- Hase Address: 05000000 H
- 🖶 🛛 Data Length: 1H

Offset	Name	Attribute	Description	Value
0x000010H	PowerPortCtrl1	R/W	Status of the 1st power supply switch	0 for on
				1 for off
0x000011H	PowerPortCtrl2	R/W	Status of the 2nd power supply switch	0 for on
				1 for off
0x000012H	PowerPortCtrl3	R/W	Status of the 3rd power supply switch	0 for on
				1 for off
0x000013H	PowerPortCtrl4	R/W	Status of the 4th power supply switch	0 for on
				1 for off
0x000014H	PowerPortCtrl5	R/W	Status of the 5th power supply switch	0 for on
				1 for off
0x000015H	PowerPortCtrl6	R/W	Status of the 6th power supply switch	0 for on
				1 for off
0x000016H	PowerPortCtrl7	R/W	Status of the 7th power supply switch	0 for on
				1 for off
0x000017H	PowerPortCtrl8	R/W	Status of the 8th power supply switch	0 for on
				1 for off

> Example

To turn the 1st power supply on.

Request Command: 55 AA 00 5D FE 00 00 00 00 00 01 00 10 00 00 05 01 00 00 C7 56 Acknowledge Data Package: AA 55 00 5D 00 FE 00 00 00 00 01 00 10 00 00 05 00 00 C6 56

3.3 Brightness Adjustment

- Device: Receiving Card
- Base Address: 02000000 H
- Data Length: 5H

Offset	Name	Attribute	Description
0x000001	Global Brightness	R/W	The overall brightness
0x000002	Red Brightness	R/W	Brightness of the red component
0x000003	Green Brightness	R/W	Brightness of the green component
0x000004	Blue Brightness	R/W	Brightness of the blue component
0x000005	V Red Brightness	R/W	Brightness of the virtual red component

Note:

The range of brightness is $0 \sim 255$. 0 represents the minimum brightness, while 255 represents the maximum brightness.

> Example

Read the brightness of the first receiving card.

Request Command: 55 AA 00 14 FE 00 01 00 00 00 00 00 01 00 00 02 05 00 70 56 Acknowledge Data Package: AA 55 00 14 00 FE 01 00 00 00 00 00 00 00 02 05 00 FF FF FF FF FF 6B 5B

> Example

Set the overall brightness and brightness of all five components as 128.

Request Command: 55 AA 00 15 FE 00 01 00 00 00 01 00 01 00 00 02 05 00 80 80 80 80 80 F2 58 Acknowledge Data Package: AA 55 00 15 00 FE 01 00 00 00 01 00 01 00 00 02 00 00 6D 56

> Example

Set the overall brightness of one component as 128.

Request Command: 55 AA 00 15 FE 00 01 00 00 00 01 00 01 00 00 02 01 00 80 EE 56 Acknowledge Data Package: AA 55 00 15 00 FE 01 00 00 00 01 00 01 00 00 02 00 00 6D 56

Broadcasting the commands on one Ethernet port, set the response device's number as FF. Such as set scan board address as FF FF, means that all the receiving cards connected on the same Ethernet port would receive the write data command.

> Example

Set all receiving cards on the same Ethernet port overall brightness and brightness of all five components as 128

Request Command: 55 AA 00 15 FE 00 01 00 FF FF 01 00 01 00 00 02 05 00 80 80 80 80 80 F0 5A Acknowledge Data Package: AA 55 00 15 00 FE 01 00 FF FF 01 00 01 00 00 02 00 00 6B 58

Broadcasting the commands on all Ethernet ports, set the response device's number as FF. Such as set port address as FF and board address as FF FF, means that all the receiving cards of the screen would receive the write data command.

> Example

Set all receiving cards on all Ethernet ports overall brightness and brightness of all five components as 128

Request Command: 55 AA 00 15 FE 00 01 FF FF FF 01 00 01 00 00 02 05 00 80 80 80 80 80 EF 5B Acknowledge Data Package: AA 55 00 15 00 FE 01 FF FF FF 01 00 01 00 00 02 00 00 6A 59

Note:

To store the parameters into the flash, there is a parameter store operation must be implemented. For more details, please refer to Chapter 3.15.

3.4 Reset Sending Cards/Controllers to Factory Setting

- Device: Sending Card
- Base Address: 0100_0000H
- 🖊 🛛 Data Length: 1H

Register Unit Base Address: 0100_0000H

Offset(H)	Name	Bits	Attribute	Description	Default(H)
02H	Command for resetting to factory setting	8	R/W	Writing any value to this register will activate the operation of reset all sending cards / controllers to factory setting.	00

> Example

Request Command: 55 AA 00 32 FE 00 00 00 00 00 01 00 02 00 00 01 01 00 01 8B 56 Acknowledge Data Package: AA 55 00 32 00 FE 00 00 00 00 01 00 02 00 00 01 00 00 89 56

3.5 Gamma Value and Table

3.5.1 Gamma Value

- Device: Receiving Card
- Base Address: 02000000 H
- 🖊 🛛 Data Length: 1H

The Gamma value is one of the parameters in the gamma transform equation. It is stored in the receiving card.

Offset	Name	Attribute	Description
0x000000	Gamma	R/W	Gamma value

Note:

Gamma transform equation

$$y = (2^m - 1) \times (\frac{x}{2^n - 1})^{\gamma}$$

y: output value of gamma transform

m: data width of output value

x: input value of gray scale

n: data width of input value, normally n=8

γ: the gamma value

> Example

Request Command: 55 AA 00 15 FE 00 01 00 00 00 00 00 00 00 00 02 01 00 6C 56 Acknowledge Data Package: AA 55 00 15 00 FE 01 00 00 00 00 00 00 00 00 02 01 00 1C 88 56 *Note:*

1C: means the gamma value is 2.0.

3.5.2 Gamma Table

- Device: Receiving Card
- Base Address: 0x0500_0000H
- Data Length: 400H

Gamma table is used for data transform. It is based on look-up table method. When the receiving card receives the video data from sending card, it will finish the transformation through look-up table method. Offset addresses 0x000100~0x0003ff are reserved.

Offset	Name	Bits	Attribute	Description
0x000000				
	GammaTable	16	R/W	The gamma table is saved here.
0x0003ff				

Note:

To store the parameters into the flash, there is a parameter store operation must be implemented. For more details, please refer to Chapter 3.15.

3.6 Sending cards / Controllers Firmware Version Information

- Device: Sending Card
- Base Address: 0x0400_0000H
- 🖶 Data Length: 4H

Offset(H)	Name	Bits	Attribute	Description
10_0004		8	R/W	
10_0005		8	R/W	The version number has four parts. Each part
10_0006	FPGA program version	8	R/W	is represent by one byte.
10_0007		8	R/W	

> Example

Request Command: 55 AA 00 15 FE 00 00 00 00 00 00 00 00 04 00 10 04 04 00 84 56 Acknowledge Data Package: AA 55 00 15 00 FE 00 00 00 00 00 00 04 00 10 04 04 00 04 03 00 00 8B 56

Note:

04 03 00 00: means the FPGA program version is 4.3.0.0

3.7 Hardware Reference

Each device has a Model ID. The Model ID is represented by two bytes.

3.7.1 Receiving card

All types of receiving cards have the same Model ID. It is as follow

- Device: Receiving Card
- 🖊 🛛 Data Length: 1H

Device Type	Model ID (High byte)	Model ID(Low byte)
All types	0x41	0x01

3.7.2 Controller

- Device: Sending Card
- Base Address: 0x0000_0000H
- Data Length: 2H

Offset(H)	Name	Bits	Attribute	Description	Default(H)
211		Q	R	Lowe byte of the	
211	Controller/Sender Model	0	n	controller model ID	
20	ID	0	D	High byte of the	
50		0	ň	controller model ID	

Sending Cards / Controllers Model ID Table

Device Type	ModelID (High byte)	ModelID(low byte)
MCRL500	0x01	0x01
MSD300/MCTRL300	0x00	0x01
MSD600/MCTRL600/MCTRL610	0x11	0x01

> Example

Request Command: 55 AA 00 32 FE 00 00 00 00 00 00 00 02 00 00 02 00 87 56 Acknowledge Data Package: AA 55 02 32 00 FE 00 00 00 00 00 00 02 00 00 02 00 01 00 8C 56

3.7.3 Function Card

- Device: Function Card
- Base Address: 0x0000_0000H
- Data Length: 2H

Offset	Name	Attri.	Description
2H	FuncCardModle ID	R	Function card Model ID
3H			

Function Card Model ID Table

Device Type	ModelID (High byte)	ModelID(Low byte)
MFN300	0x81	0x01

> Example

Request Command: 55 AA 00 32 FE 00 02 00 00 00 00 00 02 00 00 02 00 8B 56 Acknowledge Data Package: AA 55 00 32 00 FE 02 00 00 00 00 00 02 00 00 02 00 01 81 0D 57

3.8 Environment Temperature&Humidity and Brightness

The environment temperature and humidity information is from thermal/humidity sensor MTH300. A MTH300 shall be connected to a function card through RS485 port. The following information is for how to read temperature and humidity from a MTH300.

To read data from a MTH300, one sends a command to the function card first (write certain data to the function card). After receiving the command, the function will acquire temperature and humidity data from the MTH300 and put them at special address. One can then get the temperature and humidity data by reading data from that special address of the function card.

In the table below are the address of the function card to send command to and read temperature and humidity from.

Note that when a light sensor NS048C is connected to the system through a function card, the environment brightness measured by it can be read back in the similar way like a MTH300.

A light sensor can also be connected to a sending card/box directly. Please refer to 3.8.4 for the protocol for accessing a light sensor directly connected to a sending card/box.

3.8.1 Function card RS485 external device Management

- Device: Function Card
- Base Address: 0x0600_0000H
- Data Length:

Offset	Name	Attri.	Attri. Description	
			There are 4 RS485 ports on a	
04	Address of the external	14/	function card. Their addresses are	
UH	device to be accessed	vv	from 0 to 3. This can be found form	
			the function card.	
1H	Data transmission speed (between function card and external device)	W	Set as 0	Baud Rate 115200bps
2-3H	Reserved	W	Set as 0	Reserved
				Protocol
			Write or read these bytes according	for
4H		W	to the protocol for accessing	accessing
			external device.	external
				device

3.8.2 Protocol for accessing MTH300

The following should be written to the address starting from 4H. After these 3 bytes are written, the function card can acquire data from the MTH300 when the request command is sent.

Offset	Name	Attri.	Description	Remark
0Н		W	0x55	
1H		W	0xAA	
2H		W	0x82	
			END	

Read the 7 bytes starting from 4H. Temperature and humidity data is in them.

Offset	Name	Attribute	Description	Remark
0H	Package Head	R	Охаа	
1H	Package Head	R	0x55	
2H	Package Head	R	0x82	
3H	Low byte of temperature	R	хх	Temperature Unit: 0.10℃
4H	High byte of temperature	R	хх	The highest bit is for the validation of the value. 1 means that the data is valid.
5H	Humidity	R	хх	Humidity Unit: 1%.

NovaStar Tech Co., Ltd

				The highest bit is for the
				validation of the value. 1
				means that the data is valid.
				Package head shall not be
6H	Checksum	R	xx	included when calculate the
				checksum.

> Example

In order to acquire the data from MTH300 through function card, two request commands need to be sent for one time. The two commands need to be pairs used. The first request command is to refresh the register data of MTH300 in function card. The second command is to read the data from function card.

Data refresh command:

Request Command: 55 AA 00 15 FE 00 02 00 00 00 01 00 00 00 00 06 07 00 00 00 00 00 55 AA 82 F9 57

Acknowledge Data Package: AA 55 00 15 00 FE 02 00 00 00 01 00 00 00 00 06 00 00 71 56 *Note:*

02: commands to function card

00: commands output from sending card port 1

01: write data

00 00 00 00 06: base address

07: data length

00: RS485 port 1

00: set baud rate, the data transmission speed between function card and external device

00: reserved

00: reserved

55 AA 82: protocol for accessing MTH300

Data read command:

Request Command: 55 AA 00 15 FE 00 02 00 00 00 00 00 00 00 00 00 06 07 00 77 56 Acknowledge Data Package: AA 55 00 15 00 FE 02 00 00 00 00 00 00 00 00 00 00 AA 55 82 25 81 00 28 C6 58

Note:

02: commands to function card 00: commands output from sending card port 1 00: read data 00 00 00 00 06: base address

07: data length

AA 55 82: package head of result

25: low byte of environment temperature. The unit for the brightness data is 0.1°C.

81: high byte of environment temperature. The highest bit is for data validation. And 1 means the data is valid.

00: Humidity value. The highest bit is for the validation of the value. 1 means that the data is valid.

28: check sum

3.8.3 Protocol for accessing NS048C through function card

The following should be written to the address starting from 4H. After these 7 bytes are written, the function card will acquire data from the light sensor NS048C.

Offset	Name	Attri.	Description	Remark
0H		W	0x55	
1H		W	0xAA	
2Н		W	0x01	
3Н		W	0x02	
4H		W	0x80	
5H		W	0xFF	
6H		W	0x81	
			END	

Read the 5 bytes starting from 4H. Environment brightness data is in them. The unit for the brightness data is 2Lux.

Offset	Name	Attri.	Description	Remark
0H	Package Head		0x01	
1H	Data Length		0x02	
2H	High byte of environment		хх	The highest bit is for data
	brightness			validation. And 1 means the
				data is valid.
3H	Low byte of environment		хх	
	brightness			
4H	Check Sum		xx	

➤ Example

In order to acquire the data from NS048C through function card, two request commands need to be sent for one time. The two commands need to be pairs used. The first request command is to refresh the register data of NS048 in function card. The second command is to read the data from function card.

Data refresh command:

Request Command: 55 AA 00 15 FE 00 02 00 00 00 01 00 00 00 00 06 0B 00 00 00 00 00 55 AA 01 02 80 FF 81 7E 59

Acknowledge Data Package: AA 55 00 15 00 FE 02 00 00 00 01 00 00 00 00 00 00 71 56

Note:

02: commands to function card 00: commands output from sending card port 1 01: write data 00 00 00 00 06: base address 0B: data length 00: RS485 port 1 00: set baud rate, the data transmission speed between function card and external device 00: reserved 00: reserved 55 AA 01 02 80 FF 81: protocol for accessing NS048C

Data read command:

Request Command: 55 AA 00 15 FE 00 02 00 00 00 00 00 00 00 00 00 06 05 00 75 56 Acknowledge Data Package: AA 55 00 15 00 FE 02 00 00 00 00 00 00 00 00 06 05 00 01 02 80 5F E1 38 58

Note:

02: commands to function card

00: commands output from sending card port 1

00: read data

00 00 00 00 06: base address

05: data length

01: package head of result

02: package length of result

80: high byte of environment brightness. The highest bit is for data validation. And 1 means the data is valid.

5F: low byte of environment brightness. The unit for the brightness data is 2Lux.

E1: check sum

3.8.4 Protocol for accessing NS048C directly

- Device: Sending Card
- Base Address: 0x0200_0000H
- 🖊 🛛 Data Length: 2H

Offset(H)	Name	Bits	Attribute	Description	Remark
OFH	Brightness	8	R	Low 8 bits of Environment brightness	the unit of the data is 2Lux
10H	Brightness	8	R	High 8 bits of environment brightness	The highest bit is for data validation. And 1 means the data is valid.

> Example

Read the environment brightness measured by a light sensor connected to a sending card directly. The value is 80H 38H. 80H means the data is valid. 38H is the brightness measured. As the unit of the data is 2Lux, so the environment brightness is 112Lux.

Request Command: 55 AA 00 5B FE 00 00 00 00 00 00 00 00 00 02 02 00 C1 56 Acknowledge Data Package: AA 55 00 5B 00 FE 00 00 00 00 00 00 00 00 02 02 00 38 80 7C 57

Note: although we put **Lux** behind the data, the value should not be looked at as an absolute value. The glass window and the infrared filter in front of the sensor make the incident radiation intensity different from that outside the light probe. But as the relation of the light sensor output and the absolute environment brightness is fixed, the light sensor output can be used to represent the environment brightness.

3.8.5 Protocol for stand-alone light sensor

To set a light sensor into stand-alone mode, finish the settings for auto-brightness adjustment first, and then enable stand-alone mode for the light sensor. To set the light sensor back to manual mode, just disable the stand alone mode.

3.8.5.1 Enable stand-alone mode of a light sensor

- Device: Sending Card
- Base Address: 0x0A00_0000H
- 🖶 🛛 Data Length: 1H

Offset(H)	Name	Bits	Attribute	Description	Default(H)
00H	Enable stand-alone mode	8	R/W	Set this byte as 0x7D to	FF
	of the light sensor			enable stand-alone mode of	
				the light sensor. To disable	
				stand-alone mode, set this	
				byte as 0xFF.	

> Example

Enable stand-alone mode

Request Command: 55 AA 00 5B FE 00 00 00 00 00 01 00 00 00 00 0A 01 00 7D 37 57 Acknowledge Data Package: AA 55 00 5B 00 FE 00 00 00 00 01 00 00 00 00 0A 00 00 B9 56

Disable stand-alone mode

Request Command: 55 AA 00 5B FE 00 00 00 00 00 01 00 00 00 00 0A 01 00 FF B9 57 Acknowledge Data Package: AA 55 00 5B 00 FE 00 00 00 00 01 00 00 00 00 0A 00 00 B9 56

> Example

Read stand-alone mode

Request Command: 55 AA 00 5B FE 00 00 00 00 00 00 00 00 00 00 00 00 08 01 00 B9 56 Acknowledge Data Package: AA 55 00 5B 00 FE 00 00 00 00 00 00 00 00 00 00 00 7D 36 57

3.8.5.1 Settings for auto-brightness adjustment

When in auto-brightness adjustment mode, the controller will adjust the screen brightness in the way shown in the figure bellow. If the environment brightness is lower than the Min Lux, the controller will set the screen brightness as Min Brightness; or if the environment brightness is higher than Max Lux, the controller will set the screen brightness as Max Brightness. In between Min Lux and Max Lux, the environment brightness interval is evenly divided into Segment Num parts. So is the screen brightness interval. If the environment brightness is within certain segment, the controller will set the screen brightness to be corresponding brightness value.

Following is the address of the values to be set for auto-brightness adjustment.

- Device: Sending Card
- Base Address: 0x0A00_0000H
- 🖶 Data Length: 2FH

Offset(H)	Name	Bits	Attribute	Description	Default(H)
01H	The number of light	8	R/W	The maximum value could be	FF
	sensors			8. As one controller, such as	
				MCTRL300, can have one	
				light sensor only. So if the	
				light sensor is connected to a	
				controller, set this value as 1.	
				If function card is used, this	
				value could be up to 8.	
02H	Reserved	8	R/W		FF
03H	Reserved	8	R/W		FF
04H	Reserved	8	R/W		FF
05H	Max Lux(Low Byte)	8	R/W	Low byte of the maximum	FF
				environment brightness	
06H	Max Lux(High Byte)	8	R/W	High byte of the maximum	FF
				environment brightness	
07H	Min Lux(Low Byte)	8	R/W	Low byte of the minimum	FF
				environment brightness	
08H	Min Lux(High Byte)	8	R/W	High byte of the minimum	FF
				environment brightness	
09H	Maximum brightness	8	R/W	Max Brightness to be set for	FF
				the screen	
0AH	Minimum brightness	8	R/W	Min Brightness to be set for	FF

				the screen	
0BH	Segment Num	8	R/W	Segment number	FF
0CH	Reserved	8	R/W	Reserved	FF
	Reserved			Reserved	
1FH	Reserved	8	R/W	Reserved	FF
20H	Light sensor position	8	R/W	If the light sensor is	FF
				connected to a sending card/	
				sending box (controller), set	
				this value as 0x01; otherwise,	
				if the light sensor is	
				connected with a function	
				card, set this value as 0x00	
21H	Port Address Pos	8	R/W	The RJ45 port of a controller/	FF
				sending card that is	
				connected with the function	
				card. (If the light sensor is	
				connected to a function card.	
				To locate the light sensor, the	
				system needs to know the	
				function card is connected	
				with which RJ45 port of the	
				controller.)	
22H	Function Card Pos(Low)	8	R/W	Low byte of the index of the	FF
				function card.	
23H	Function Card Pos(High)	8	R/W	High byte of the index of the	FF
				function card.	
24H	Address of the light	8	R/W	If the light sensor is	FF
	sensor on the function			connected with the first port	
	card			of the function card, the	
				address is 0; if connected	
				with the second port, the	
				address is 1if the light	
				sensor is connected with the	
				forth port, the address is 3.	
25H	Reserved	8	R/W	Reserved	FF
2FH	Reserved	8	R/W	Reserved	FF

3.9 Receiving Card Working Status

Just try reading the receiving card model ID. If the ID can be read back, it means the receiving card is working normally. Otherwise, the receiving card might not work.

- Device: Receiving Card
- Base Address: 0x0000_0000H
- 🖶 Data Length: 2H

Offset	Name	Attribute	Description	
0x000000	Seen Card Media	D	Avalid Madel ID is a value other than 00	
0x000001	Scancardivioule	ĸ	A valid Model ID is a value other than 00.	

> Example

Request Command: 55 AA 00 15 FE 00 01 00 00 00 00 00 00 00 00 00 02 00 6B 56

3.10 Redundant Status Checking

To check the redundant status of the control system, both sending unit and receiving cards status should be checked. First, check whether the sending unit output ports are working as redundant. If certain output port is working as redundant, then check how many receiving cards connected to this output port are working in the redundant line.

3.10.1 Sending Unit Output Port Redundant Status Checking

- Device: Sending Card
- Base Address: 0x0200_0000H
- 🖶 Data Length: 1H

Offset(H)	Name	Bits	Attribute	Description	Default(H)
1E	RedundantStatus	8	R	Bit[1:0] is used to represent the redundant status of the sending unit	FF
				output port 1. If Bit[1:0] 2'b is 10 (Bit[1]=1, Bit[0]=0),	
				output port 1 of the sending unit is	
				working as redundant. For values other than 10, the	
				port is not working as redundant.	
				output port 2; Bit[5:4] is for output	
				port 3; Bit[7:6] is for output	
				Values for Bit[3:2], Bit [5:4] and Bit[7:6]	
				means the same as Bit[1:0].	

3.10.2 Receiving Card Working in Redundant Line

Try to read the receiving card Model ID with the address based on the redundant output port of the sending unit. If the Model ID can be read back, it means the corresponding receiving card is working in the redundant line.

To read the Model ID of a receiving card, please refer to Section **3.9 Receiving Card Working Status**.

3.11 Sending Card resolution setting

To set the resolution and refresh rate of sending card, the specified content should be written into EDID register. This document describes the basic 128-byte data structure "EDID 1.3". To obtain the latest standard and any support documentation, contact VESA.

3.11.1 EDID Register Setting

The EDID space address is 0x0800_0000H –0x0800_00FFH. For EDID structure 1.3, 128 bytes data should be written into specified address.

- Device: Sending Card
- EDID Base Address: 0x0800_0000H
- 🖶 🛛 Data Length: 128H

Offset(H)	Bits	Attribute	Description	
0x00	8	R/W	EDID Register0	
0x7F	8	R/W	EDID Register127	

> Example

To set the resolution as 1440×900 @60Hz, the EDID content of 128 Bytes as below: 00 FF FF FF FF FF FF 00 39 F6 05 04 13 06 28 00 10 17 01 03 81 1E 17 B4 EA C1 E5 A3 57 4E 9C 23 1D 50 54 21 08 00 01 01 01 01 01 01 01 01 01 01 01 01 01 01 10 23 A0 A0 50 84 23 30 30 20 36 00 CB 28 11 00 00 1E 00 00 00 FF 00 4E 4F 56 41 53 54 41 52 4D 33 00 00 00 00 00 FC 00 4D 41 52 53 A3 44 49 53 50 4C 41 59 00 00 00 FD 00 30 7B 1C C8 11 00 0A 20 20 20 20 20 20 00 E9

To set the resolution as 1920×1080 @60Hz, the EDID content of 128 Bytes as below: 00 FF FF FF FF FF 00 39 F6 05 04 13 06 28 00 10 17 01 03 81 1E 17 B4 EA C1 E5 A3 57 4E 9C 23 1D 50 54 21 08 00 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 5B 36 80 A0 70 38 23 40 30 20

NOVASTAR

36 00 CB 28 11 00 00 1E 00 00 00 FF 00 4E 4F 56 41 53 54 41 52 4D 33 00 00 00 00 00 00 FC 00 4D 41 52 53 A3 44 49 53 50 4C 41 59 00 00 00 00 FD 00 30 7B 1C C8 11 00 0A 20 20 20 20 20 20 00 C7

3.12 Display Control

Display control setting can make the screen display kinds of images, such as red, green, blue and white. Additionally, the aging and normal working mode can be setting.

3.12.1 Display control register setting

- Device: Receiving Card
- Base Address: 0x0200_0000H
- Data Length: 1H

Offset(H)	Name	Bits	Attribute	Description
0x000101	SelfTestMode	8	R/W	SelfTestMode register, its
				default value is 0x00. The value
				of each function refers to the
				following table.

Receiving Card Display Function Table

Register Value	Description				
0x00	Reserved				
0x01	Reserved				
0x02	Red				
0x03	Green				
0x04	Blue				
0x05	White				
0x06	Horizon line				
0x07	Vertical line				
0x08	Incline line				
0x08	Auto Grayscale Increasing				
	(256 Grade)				

0x0a	Aging
	(Loop all kinds of test mode above)

> Example

Blue image setting for the first receiving card

 Request Command:
 55 AA 00 80 FE 00 01 00 00 00 01 00 01 01 00 02 01 00 04 DE 56

 Acknowledge Data Package:
 AA 55 00 80 00 FE 01 00 FF FF 01 00 01 01 00 02 00 00 D7 58

➢ Example

Red image setting for all receiving card on the same sending card Ethernet portRequest Command:55 AA 00 80 FE 00 01 00 FF FF 01 00 01 01 00 02 01 00 02 DA 58Acknowledge Data Package:AA 55 00 80 00 FE 01 00 FF FF 01 00 01 01 00 02 00 00 D7 58

> Example

Horizon line setting for all receiving card on the same sending card Ethernet portRequest Command:55 AA 00 80 FE 00 01 00 FF FF 01 00 01 01 00 02 01 00 06 DE 58Acknowledge Data Package:AA 55 00 80 00 FE 01 00 FF FF 01 00 01 01 00 02 00 00 D7 58

3.13 Calibration Control

- Device: Receiving Card
- Base Address: 0x0200_0000H
- 🖶 🛛 Data Length: 1H

Offset(H)	Name	Bits	Attribute	Description
0x000051	CorrectionOn	8	R/W	Bit[0]: calibration on/off
				'1', calibration on; '0', calibration off
				Bit[1]: calibration type
				'1', brightness calibration;
				'0', color calibration
				Bit[7:2]: Reserved, "000000"
				Example:
				0x00: calibration off
				0x03: brightness calibration on
				0x01: color calibration on

➤ Example

Calibration off Setting:

Request Command: 55 AA 00 7F FE 00 01 00 FF FF 01 00 51 00 00 02 01 00 00 26 59

3.14 Reconnect Sending Card/Receiving Card

- Device: Sending Card/Receiving Card
- Base Address: 0x0000_0000H
- 🖶 🛛 Data Length: 2H

Offset(H)	Name	Bits	Attribute	Description	Default(H)
24		Q	R	Low byte of the	Acknowledge data is
211	Controller/Sender	0	n	controller model ID	not equal to zero
ЗН	Model ID	0	D	High byte of the	means in connected
		ð	к	controller model ID	status.

Example

Request Command: 55 AA 00 AA FE 00 00 00 00 00 00 00 02 00 00 02 00 01 57 Acknowledge Data Package: AA 55 00 AA 00 FE 00 00 00 00 00 00 02 00 00 02 00 01 00 02 57

3.15 Parameter Store

- Device: Receiving Card
- Base Address: 0x0100_0000H
- 🖶 🛛 Data Length: 1H

Offset(H)	Name	Bits	Attribute	Description
11H	Parameter Store	8	W	Write down any value(such as
				0x11) into the address to finish
				the parameter store operation

Example

Set all receiving cards on all Ethernet ports overall brightness and brightness of all five components as 128, 0, 128, 128.

Request Command: 55 AA 00 15 FE 00 01 FF FF FF 01 00 01 00 00 02 05 00 80 00 80 80 80 6F 5B Acknowledge Data Package: AA 55 00 15 00 FE 01 FF FF FF 01 00 01 00 00 02 00 00 6A 59

The brightness on all receiving cards will recover to last value when the screen power off and power on. Because the parameters setting are not stored into the flash. In order to do that, the parameter store operation must be implemented.

Request Command: 55 AA 00 15 FE 00 01 FF FF FF 01 00 11 00 00 01 01 00 11 8B 59 Acknowledge Data Package: AA 55 00 15 00 FE 01 FF FF FF 01 00 11 00 00 01 00 00 79 59